Flow stimuli reveal ecologically-appropriate responses in mouse visual cortex

Luciano Dyballa¹,* Mahmood S. Hoseini²,* Maria C. Dadarlat²
Steven W. Zucker¹,³ Michael P. Stryker²,†

¹Dept. of Computer Science, Yale Univ.
²Center for Integrative Neuroscience, Dept. of Physiology, Univ. of California, San Francisco
³Dept. of Biomedical Engineering, Yale Univ.

Abstract

Assessments of the mouse visual system based on spatial frequency analysis imply that its visual capacity is low, with few neurons responding to spatial frequencies greater than 0.5 cycles/deg. However, visually-mediated behaviors, such as prey capture, suggest that the mouse visual system is more precise. We introduce a new stimulus class—visual flow patterns—that is more like what the mouse would encounter in the natural world than are sine-wave gratings but is more tractable for analysis than are natural images. We used 128-site silicon microelectrodes to measure the simultaneous responses of single neurons in the primary visual cortex (V1) of alert mice. While holding temporal-frequency content fixed, we explored a class of drifting patterns of black or white dots that have energy only at higher spatial frequencies. These flow stimuli evoke strong visually-mediated responses well beyond those predicted by spatial frequency analysis. Flow responses predominate in higher spatial-frequency ranges (0.15–1.6 cycles/degree); many are orientation- or direction-selective; and flow responses of many neurons depend strongly on sign of contrast. Many cells exhibit distributed responses across our stimulus ensemble. Together, these results challenge conventional linear approaches to visual processing and extend the mouse’s visual capacity to behaviorally-relevant ranges.

Significance Statement The visual system of the mouse is now widely studied as a model for development and disease in humans. Studies of its primary visual cortex (V1) using conventional grating stimuli to construct linear-nonlinear receptive fields suggest that the mouse must have very poor vision. Using novel stimuli resembling the flow of images across the retina as the mouse moves through the grass, we find that most V1 neurons respond reliably to very much finer details of the visual scene than previously believed. Our findings suggest that the conventional notion of a unique receptive field does not capture the operation of the neural network in mouse V1.

Introduction

The mouse has become a major model for studying vision because of the genetic, imaging, and molecular tools available [1]. Studies have revealed relationships between macroscopic states of the brain and activity in visual cortex (running vs. stationary) [2,3], pupil size and activity [4,5], and visual interest (e.g., [6,7]). However, a basic conundrum has arisen: behaviorally, mice are capable of sharp, visually-mediated behaviors [8–10], such as accurate prey capture [11], but when assessed using standard assays, such as spatial frequency gratings (Fig. 1), the mouse appears to have very poor vision. Although orientation-selectivity has been found [12], receptive fields are large (typically ∼25 degrees²) when estimated by spike triggered averaging, and spatial frequency tuning is concentrated below 0.08 cycles/degree (cpd). While this motivates the use of gratings at 0.04 cpd in experiments, it raises the question: How does the visual system perform so exquisitely in natural tasks?

We show here that ecologically-relevant stimuli can exercise mouse visual cortex in novel and manifold ways. While plaids [13,14] and random-dot kinematograms [15,16] are a step beyond gratings, the leap to natural images (e.g., [17]) is more common (e.g., [18,19]). However, natural images are difficult to obtain [20], difficult to control parametrically, and difficult to analyze beyond second-order [21].

For a mouse running through a field, the visual projection is like a ‘waterfall’ flowing past, with oriented segments moving into and out of occlusion relationships (Fig. 1A) [22]. This visual metaphor motivates

* L.D. and M.H. contributed equally to this work.
† Contact e-mail: stryker@phy.ucsf.edu.
our stimuli. We approximate such patterns with a class of visual flows comprised of dots, so they are more natural than drifting gratings but can be parametrically controlled in their orientation (content and angle), spatial frequency, and direction of motion. We call them flows because, intuitively, they consist of a field of particles (either dots or dotted line-segments) dropped into a ‘flowing river’. More formally, each dot is displaced along a vector field in space and time and follows a dynamical system \(\text{[23]} \). When the orientation structure is removed, the flows reduce to random-dot kinematograms; when the temporal structure is removed, the flows reduce to static Glass patterns \(\text{[24]} \). Thus they are rich in geometry and, for humans, the perception of such flows differs from strictly aligned patterns \(\text{[25]} \). Parametric variations in orientation, direction, etc., define an ensemble of stimuli.

We here explore activity in mouse V1 in response to the flow ensemble. In many cases flow stimuli elicit more vigorous responses than drifting gratings, particularly at high spatial frequencies 3–5 octaves above 0.04 cpd. Some V1 neurons are classical, resembling feature detectors, while others exhibit a mixed selectivity rarely reported in early visual cortex. The rich ensemble of selectivities in V1 may equip the mouse to behave in the natural world.

Results

Analysis of stimulus selectivity in V1

Cells in V1 have diverse preferred stimuli. We developed an ensemble of stimuli including drifting gratings, single dot flows (random dot kinematograms), and oriented flows where each element consists of 3 or 4 dots (see Methods). The stimuli were either positive contrast (bright dots) or negative contrast (dark dots). Activity is plotted as an array of peristimulus time histograms (PSTHs) and tuning curves for each unit, to facilitate a quick assessment of the different “dimensions” to a cell’s response. Experiments were conducted in two cohorts, the first with stimuli at 0.04, 0.15, and 0.24 cpd, and the second with stimuli at 0.04, 0.7, 1.0, 1.25, and 1.6 cpd.

We begin with example cells from the cohort 1. The first one (Fig. 2A) has the response profile one would expect for a *simple cell* in V1. It responds almost exclusively to low-frequency gratings; the PSTHs for high-frequency gratings and for flows (both one dot and three-dot elements) remain virtually at baseline. Its spike triggered average depicts a classical receptive field, consistent with the frequency response, and it is well tuned for orientation. But such cells were relatively rare in our experiments (discussed below). Another example (Fig. 2B) exhibits a weak response to gratings and a stronger response to flows. The STA, which would predict a strong response to low-frequency gratings, completely fails to predict this response profile. Finally, many cells are multi-dimensional (Fig. 2C): they respond well to several of the flows utilized in our experiments (peaks at 0.15, 0.24, 0.7, 1.0, 1.25, and 1.6 cpd) have power well beyond 0.04 cpd (dashed curve), which is the spatial frequency previously reported as optimal for cells in mouse V1 (cf. inset, from \(\text{[12]} \)). To compare stimuli, each spectrum is normalized by the power at the peak frequency.

![Figure 1: Introducing flow stimuli.](image)

A: Ecological motivation for using flow stimuli: modifying an image of a grassy patch to progressively emphasize higher contrasts converges to a binary pattern of random, oriented line segments. B, We abstract this to flow fields consisting of dotted segments of different lengths, emphasizing two geometries (oriented [3 or 4 aligned dots] or non-oriented [single dots]), two contrast polarities (positive or negative), and various sizes. C, Flows are inconsistent with classical filtering views of V1. A Gabor receptive field at 0.04 cpd superimposed onto the 3-dot flow whose energy peaks at 0.24 cpd (top right example in B), for comparison. D, The 1-D discrete Fourier transforms (single-sided) of the flows utilized in our experiments (peaks at 0.15, 0.24, 0.7, 1.0, 1.25, and 1.6 cpd) have power well beyond 0.04 cpd (dashed curve), which is the spatial frequency previously reported as optimal for cells in mouse V1 (cf. inset, from \(\text{[12]} \)). To compare stimuli, each spectrum is normalized by the power at the peak frequency.
Figure 2: Variety of responses in V1. A–C, Tuning curves and PSTHs of three example cells in response to drifting gratings and flows at 0.04, 0.15, and 0.24 cpd in 8 equally-spaced directions of motion. Time axis in histograms encompasses an entire period of stimulus presentation (1.5 s). Insets in STAs show, at the same scale, stimuli that produced the most significant responses. A, Cell responding to low-frequency gratings only. Bin size 34 ms. B, Cell responding preferably to single-dot flows with negative contrast. Bin size 83 ms. C, Cell responding strongly to both oriented (3 dots), positive flows and gratings (at both high and low spatial frequencies). Bin size 46 ms. D, Distribution of optimal spatial frequency in terms of proportion of cells significantly responding to at least one of the stimuli. In the group of experiments using the first set of stimuli (left panel, 0.04–0.24 cpd, n = 357 cells, 3 animals), the majority of cells fired more strongly for stimuli at 0.15 cpd, followed closely by 0.04 cpd. For the second set of stimuli (right panel, 0.04–1.6 cpd, n = 256 cells, 3 animals) there was an overwhelming preference for 0.04 cpd, although more than half the cells had optimal spatial frequency in the range 0.7–1.6 cpd. E, Distribution of preferred stimulus among all cells. When low-frequency gratings (0.04 cpd) are included among the stimuli (left panel), the majority of cells respond equally well to both classes (“Multi,” 45%), followed by only flows (28%) and only gratings (26%); 29% of the cells were not significantly responsive (“N.S.”) to any of the stimuli displayed (n = 1026 cells; 10 experiments, 6 animals). When we do not include low-frequency gratings, thereby limiting the comparison to flows and gratings with similar spatial frequencies only, there is a significant preference for flows only (50%), and for both (43%), over gratings only (7%). Comparison of the left and right panels reveals that approximately 20% of cells preferred low-frequency gratings, over gratings only (9%). Comparison of the left and right panels reveals that approximately 20% of cells preferred low-frequency gratings, over gratings only (9%). When we recompute stimulus preference considering only stimuli with comparable spatial frequencies, most cells that preferred low-frequency gratings now either prefer none of the high-frequency stimuli, or significantly prefer flows over high-frequency gratings, given that the fraction that prefers both remains essentially constant in the two scenarios. Error bars represent s.e.m. F, Distribution of preferred stimulus among well-tuned cells (i.e., those with OSI > 0.5 or DSI > 0.5). Left: 52% (gratings), 32% (flows); 16% (multiple); right: 23% (gratings), 57% (flows), 20% (multiple); n = 295 cells (left), 241 cells (right); 8 experiments, 4 animals. Here, notice that most of the cells responding to orientation and/or direction will fire more strongly to low-frequency gratings; the right panel reveals, however, that the fraction of cells well-tuned to flows is just as large. And, similarly to E, many of the well-tuned cells preferring 0.04 cpd gratings prefer flows to gratings of comparable spatial frequency. Error bars represent s.e.m.
While this leads to a crude classification of cell types, we classify the cell as multi
we stress that it is merely a set of labels for discussion; (or classes, when cells are labeled type)
Thus the preferred stimulus class, or preferred frequency in Fig. 2D; the two separate plots
class but there are significant stimuli in both classes, significantly higher than that for its preceding interstimulus interval (Mann-Whitney test). A cell prefers a stimulus class (e.g., flows or gratings) if at least one variation of that class (spatial frequency, geometry, or contrast polarity) is significant and has average peak firing rate significantly higher than the average firing rates of all significant variations of the other class (Kruskal-Wallis rank-sum test, Conover-Iman post-hoc, Bonferroni correction, p < 0.05). When there is no preferred stimulus class but there are significant stimuli in both classes, we classify the cell as multi-class, or multicomp lex. Thus the preferred stimulus class, or type of a cell, is one of gratings, flows, both, non-selective. By this classification, the cell in Fig. 2A would be classified as a grating cell; Fig. 2B would be a flow cell; and Fig. 2C would be a multi or both cell.

Once each cell's type, or preferred stimulus class, has been determined, its preferred spatial frequency can be defined as the one with highest average firing rate among all significant variations of the preferred class (or classes, when cells are labeled multi).

We plot the proportion of preferred types at each preferred frequency in Fig. 2D; the two separate plots denote units from experimental cohort 1 (0.04–0.24 cpd, n = 357 cells, 3 animals) and cohort 2 (0.04–1.6 cpd, n = 256 cells, 3 animals), respectively. Note the predominance of gratings among cells at the lowest frequency, replicating Fig. 1D, and the predominance of flow and both types at the higher frequencies.

We now examine the distribution of preferred types in two different ways, either including or not including the responses to low-frequency gratings. This is necessary, since the performance measure is a simple spike statistic that is easily dominated by the gratings. First, when low-frequency gratings are included among the stimuli, by the above definitions 45% of the cells respond equally well; i.e. are in the both type; 28% are flow cells; 26% prefer gratings; and 29% of the cells were not significantly responsive to any of the stimuli displayed (see Fig. 2E, blue). When low-frequency gratings are not included, so that the comparison is among flows and gratings at the same spatial frequencies, responses favoring flow (50%) and both (43%) predominate over those to gratings (7%) (see Fig. 2E, red). The difference between these two plots comes from a more detailed analysis: the cells responding strongly to 0.04 cpd can be divided into roughly two subgroups: one that has no significant response other than to low-frequency gratings and another that also responds well to flows (or, in fewer cases, to both flows and high-frequency gratings). These plots include all cells. A similar distinction obtains when only cells well-tuned to orientation (OSI > 0.5) or direction (DSI > 0.5) are considered (Fig. 2F).

In summary of these first data, among cells with significant preference for flows or both flows and gratings, responses were distributed across all spatial frequencies explored. For "classical" cells (those that significantly preferred gratings to flows) there is a clear preference for 0.04 cpd with a distribution in accordance with [12] (see Fig. 1D). Curiously, some cells that are well tuned to low-frequency gratings are also well

Responses to optimal flows span a wide range of spatial frequencies. To quantify this diversity at the population level, we relaxed the notion of a unique preferred stimulus for a cell to allow for multiple possible preferences, according to the following definitions. While this leads to a crude classification of cell types, we stress that it is merely a set of labels for discussion; the underlying complexity remains in the PSTHs.

An individual stimulus is significant for a particular cell if the average firing rate for that stimulus is significantly higher than that for its preceding interstimulus interval (Mann-Whitney test). A cell prefers a stimulus class (e.g., flows or gratings) if at least one variation of that class (spatial frequency, geometry, or contrast polarity) is significant and has average peak firing rate significantly higher than the peak firing rates of all significant variations of the other class (Kruskal-Wallis rank-sum test, Conover-Iman post-hoc, Bonferroni correction, p < 0.05). When there is no preferred stimulus class but there are significant stimuli in both classes, we classify the cell as multi-class, or multicomp lex. Thus the preferred stimulus class, or type of a cell, is one of gratings, flows, both, non-selective. By this classification, the cell in Fig. 2A would be classified as a grating cell; Fig. 2B would be a flow cell; and Fig. 2C would be a multi or both cell.

Once each cell's type, or preferred stimulus class, has been determined, its preferred spatial frequency can be defined as the one with highest average firing rate among all significant variations of the preferred class (or classes, when cells are labeled multi).

We plot the proportion of preferred types at each preferred frequency in Fig. 2D; the two separate plots denote units from experimental cohort 1 (0.04–0.24 cpd, n = 357 cells, 3 animals) and cohort 2 (0.04–1.6 cpd, n = 256 cells, 3 animals), respectively. Note the predominance of gratings among cells at the lowest frequency, replicating Fig. 1D, and the predominance of flow and both types at the higher frequencies.

We now examine the distribution of preferred types in two different ways, either including or not including the responses to low-frequency gratings. This is necessary, since the performance measure is a simple spike statistic that is easily dominated by the gratings. First, when low-frequency gratings are included among the stimuli, by the above definitions 45% of the cells respond equally well; i.e. are in the both type; 28% are flow cells; 26% prefer gratings; and 29% of the cells were not significantly responsive to any of the stimuli displayed (see Fig. 2E, blue). When low-frequency gratings are not included, so that the comparison is among flows and gratings at the same spatial frequencies, responses favoring flow (50%) and both (43%) predominate over those to gratings (7%) (see Fig. 2E, red). The difference between these two plots comes from a more detailed analysis: the cells responding strongly to 0.04 cpd can be divided into roughly two subgroups: one that has no significant response other than to low-frequency gratings and another that also responds well to flows (or, in fewer cases, to both flows and high-frequency gratings). These plots include all cells. A similar distinction obtains when only cells well-tuned to orientation (OSI > 0.5) or direction (DSI > 0.5) are considered (Fig. 2F).

In summary of these first data, among cells with significant preference for flows or both flows and gratings, responses were distributed across all spatial frequencies explored. For “classical” cells (those that significantly preferred gratings to flows) there is a clear preference for 0.04 cpd with a distribution in accordance with [12] (see Fig. 1D). Curiously, some cells that are well tuned to low-frequency gratings are also well

Figure 3: Cells remain highly selective at higher spatial frequencies. A, Example of cell exhibiting a stronger response to oriented, negative flows at 0.7 and 1.0 cpd when compared to gratings at various spatial frequencies. Bin size 47 ms. B, Overall proportion of well-tuned cells among cells significantly responsive to each spatial frequency (Mann-Whitney test, p < 0.05), irrespective of stimulus class. Sample sizes: 0.04 cpd (n = 508), 10 experiments, 6 animals; 0.15 cpd (n = 385), 0.24 cpd (n = 365): 5 experiments, 3 animals; 0.7 cpd (n = 214), 1.0 cpd (n = 214), 1.25 cpd (n = 186), 1.6 cpd (n = 173): 5 experiments, 3 animals.

Responses to optimal flows span a wide range of spatial frequencies. To quantify this diversity at the population level, we relaxed the notion of a unique preferred stimulus for a cell to allow for multiple possible preferences, according to the following definitions. While this leads to a crude classification of cell types, we stress that it is merely a set of labels for discussion; the underlying complexity remains in the PSTHs.

An individual stimulus is significant for a particular cell if the average firing rate for that stimulus is significantly higher than that for its preceding interstimulus interval (Mann-Whitney test). A cell prefers a stimulus class (e.g., flows or gratings) if at least one variation of that class (spatial frequency, geometry, or contrast polarity) is significant and has average peak firing rate significantly higher than the peak firing rates of all significant variations of the other class (Kruskal-Wallis rank-sum test, Conover-Iman post-hoc, Bonferroni correction, p < 0.05). When there is no preferred stimulus class but there are significant stimuli in both classes, we classify the cell as multi-class, or multicomp lex. Thus the preferred stimulus class, or type of a cell, is one of gratings, flows, both, non-selective. By this classification, the cell in Fig. 2A would be classified as a grating cell; Fig. 2B would be a flow cell; and Fig. 2C would be a multi or both cell.

Once each cell’s type, or preferred stimulus class, has been determined, its preferred spatial frequency can be defined as the one with highest average firing rate among all significant variations of the preferred class (or classes, when cells are labeled multi).

We plot the proportion of preferred types at each preferred frequency in Fig. 2D; the two separate plots denote units from experimental cohort 1 (0.04–0.24 cpd, n = 357 cells, 3 animals) and cohort 2 (0.04–1.6 cpd, n = 256 cells, 3 animals), respectively. Note the predominance of gratings among cells at the lowest frequency, replicating Fig. 1D, and the predominance of flow and both types at the higher frequencies.

We now examine the distribution of preferred types in two different ways, either including or not including the responses to low-frequency gratings. This is necessary, since the performance measure is a simple spike statistic that is easily dominated by the gratings. First, when low-frequency gratings are included among the stimuli, by the above definitions 45% of the cells respond equally well; i.e. are in the both type; 28% are flow cells; 26% prefer gratings; and 29% of the cells were not significantly responsive to any of the stimuli displayed (see Fig. 2E, blue). When low-frequency gratings are not included, so that the comparison is among flows and gratings at the same spatial frequencies, responses favoring flow (50%) and both (43%) predominate over those to gratings (7%) (see Fig. 2E, red). The difference between these two plots comes from a more detailed analysis: the cells responding strongly to 0.04 cpd can be divided into roughly two subgroups: one that has no significant response other than to low-frequency gratings and another that also responds well to flows (or, in fewer cases, to both flows and high-frequency gratings). These plots include all cells. A similar distinction obtains when only cells well-tuned to orientation (OSI > 0.5) or direction (DSI > 0.5) are considered (Fig. 2F).

In summary of these first data, among cells with significant preference for flows or both flows and gratings, responses were distributed across all spatial frequencies explored. For “classical” cells (those that significantly preferred gratings to flows) there is a clear preference for 0.04 cpd with a distribution in accordance with [12] (see Fig. 1D). Curiously, some cells that are well tuned to low-frequency gratings are also well
tuned to flows with higher spatial frequency, albeit usually with lower firing rates. Nevertheless, many of these cells have higher firing rates for flows compared to gratings of similar spatial frequency, showing that there is some aspect of the flow stimulus that strongly excites these cells despite the fact that the flow elements would excite the filter predicted by these cells’ STAs. Supplemental Materials show plots of responses to the entire stimulus ensemble for these and other cells.

Cells remain well-tuned at high spatial frequencies. Since higher firing rates do not necessarily imply high orientation- or direction-selectivity, and since a cell might retain its selectivity at several spatial frequencies (SFs), we investigated the fraction of well-tuned cells (OSI > 0.5 or DSI > 0.5) across spatial frequencies regardless of preferred stimulus (Fig. 3B). This is an estimate of the probability of a cell significantly responsive to a certain SF being well-tuned.

There are many cells well-tuned to direction and/or orientation at all SFs. Cells with high orientation selectivity tend to prefer stimuli in the 0.04–0.24 cpd range. The direction-selective cells seem to be more uniformly distributed across SFs, with a preference for intermediate SFs (0.15–0.24 cpd).

Higher stimulus selectivity in superficial and deep layers. To further characterize how each cell’s response profile is distributed across stimulus variations, we extend the concept of selectivity indices such as OSI and DSI (e.g., [12]) to compare pairs of stimulus classes. A stimulus selectivity index (SSI) is thus defined for a pair of classes (e.g., flows vs. gratings, or 1-dot flows vs. 3-dot flows) as $(R_{\text{max}} - R_{\text{min}}) / R_{\text{max}}$, where R_{max} (R_{min}) is the average peak firing rate (FR) of the stimulus with higher (lower) FR in the pair. Essentially, it measures the difference in FR between two stimuli, relative to the one with highest FR. E.g., an SSI of 0.2 means the FR for the least preferred stimulus is 20% lower than that for the preferred one. When comparing stimulus classes for which there are possibly several stimulus variations in each class, we take the variation that elicited the highest response in each one. Note that the SSI for a cell population assesses how well those cells’ responses can be used to differentiate between two stimuli, regardless of which one is the preferred one. This makes it possible to ascribe types to layers.

Cells responsive to flows and to high-frequency gratings were found in all cortical layers. Cells in layer 2/3 had significantly higher values of SSI than all other layers for differentiating flows from gratings ($p < 10^{-3}$, $p = 10^{-6}$, and $p = 10^{-4}$ for layers 4, 5, and 6, respectively), while cells in layer 5 had significantly lower SSI than layers 2/3 ($p < 10^{-4}$) and 6 ($p < 0.05$) when differentiating between flows with opposite contrast polarities, and lower than layer 2/3 ($p < 0.005$) when differentiating between oriented and non-oriented flows (Fig. 4). Error bars represent s.e.m.

![Figure 4](https://via.placeholder.com/150)

Preferential between different variations of flow stimuli goes beyond differences in spatial frequency. Among cells that responded significantly to flows, we also compared the average proportion of cells that significantly preferred oriented (3 dots) vs. non-oriented flow patterns (single dots) (Fig. 5A). Analysis of the entire population across different experiments does not reveal any particular preference, with the vast majority responding to both geometries. However, if analysis is restricted to those cells well-tuned to direction and/or orientation, the preference for a specific flow geometry—be it oriented or non-oriented—increases markedly. In particular, there is an overall preference for the oriented patterns.

Fig. 5B shows that only a minority of the cells responding to flows prefer negative contrast (15%, on average). The vast majority prefer either positive con-
Flow responses suggest network computations

At a small scale, responses to high-frequency flow stimuli (i.e., within a receptive field) are reminiscent of the sub-zones observed in the fly [33] and primate [34], each of which can be direction- or orientation-selective. And, as in the fly [35], many cells with a preference for flow stimuli are also contrast selective. At a large scale, our stimuli were displayed wide-field, so extraclassical effects may also be playing a role. While investigations of such contextual interactions in the mouse are just beginning, stimuli have been restricted to gratings [36] and bars [37], and only suppressive effects have been observed [38]. By contrast, in the primate situation is much richer [39–41], and the arrangements of dots and bars in these studies are reminiscent of our flow stimuli. Despite the fact that the mouse lacks orientation columns [42], flow responses are remarkably consistent among the different species. Flow stimuli are also informative about the geometry of surrounding objects [43], though how these geometric, network computations are realized remains an open question.

Materials and Methods

Animal procedures Experiments were performed on adult C57/BL6 mice (age 2–6 months) of either sex. The animals were maintained in the animal facility at the University of California–San Francisco and used in accordance with protocols approved by the University of California–San Francisco Institutional Animal Care and Use Committee. Preparation, extracellular recording, and single neuron analysis were generally performed as in [44]. See Supplementary Information for additional material and methods.

Design of flow stimuli The flow stimuli consist of local flow elements that move according to an underlying displacement field. The displacement field is defined as a vector in \(\mathbb{R}^2 \) (i.e., a magnitude and a direction) at each screen position. Each flow element consists of a linear arrangement of \(n \) adjacent dots, with \(n = 1 \) corresponding to a random-dot kinematogram, and \(n = 2, 3, 4 \) corresponding to oriented elements (cf. Fig. 1B). The stimulus density defines an integer screen lattice. Each flow element is dropped onto this lattice, and then its position is perturbed by a normally-distributed random variable. This destroys the impression of a perfectly regular grid of elements.
The displacement field is built on top of this, and is organized around a screen partition consisting of a grid of rectangular or hexagonal tiles, with a single displacement vector within each tile. The tiles provide controllable flexibility in the motion. A planar translation results from choosing all displacement vectors the same. To avoid the impression of such simple translations, each displacement vector is “jittered” by sampling from a normal distribution, so that there is now both position jitter and motion jitter. More generally, one can develop more complex motions, either in geometry or in time, by varying the size of the tiles (discreteness) and by varying the displacement directions. For the experiments reported in this paper, a common mean and variance for all vectors in the field was used (see SI Methods for specific parameter values).

The movement of each flow element is made even more “lifelike” by controlling its acceleration with a steering force computed as the difference between the element’s desired and current directions of motion. This behavior is based on the boids from [45] and on the steering behavior described in [46]. Using this, the desired direction can be a function of both the underlying flow field the proximity between elements; this guarantees that elements do not overlap one other, creating different geometries, densities, or sizes. The final force applied to each element is the resultant between the steering force and a repulsion force exerted by every other element within an allowed distance [47].

The advantage of this approach is that the flow elements can make successive changes in direction as they drift through the flow field by following a smooth and continuous trajectory, without abrupt changes in direction or occlusion. They also wrap around the screen boundaries to preserve a constant number of patterns being shown at all times.

It remains to control the overall luminance and its changes, both for different stages in the trial and for the local dots. For some experiments, the screen luminance during the interstimulus period was set equal to the global average luminance of the stimulus used in the upcoming trial. This controls for responses that could be caused by the global change in the screen luminance only, and not by the actual moving stimuli. However, for this strategy there will still be a change in the luminance of the background when the trial starts. To control for this, i.e., for possible responses due to changes in background luminance, we also ran experiments with a constant gray background both during the flow trials and the interstimuli intervals. For dot-luminance effects, the diameter of each dot in a multi-dotted flow element was chosen such that the total area occupied by the element was the same as that of the single-dotted version of the stimulus with same spatial frequency. In any case, repeated experiments showed that there was little (if any) effect of these different luminance change variations.

Acknowledgements

Supported by the Simons Collaboration on the Global Brain and the National Eye Institute grant R01-EY02874. M.P. Stryker is the recipient of the RPB Stein Innovation Award. We are grateful to Dr. Sotiris Maniades of UCLA for supplying the microelectrodes through the NSF NeuroNex program.

References

30. Eichenbaum H (2017) Barlow versus Hebb: When is it time to abandon the notion of feature detectors and adopt the cell assembly as the unit of cognition? Neurosci Lett.

Supplementary Information for:
Flow stimuli reveal ecologically-appropriate responses in mouse visual cortex
Luciano Dyballa, Mahmood S. Hoseini, Maria C. Dadarlat, Steven W. Zucker, Michael P. Stryker

1Contact e-mail: stryker@phy.ucsf.edu.

Supplementary Information Text

Materials and Methods

Animal procedures. Experiments were performed on adult C57BL/6j mice (age 2–6 months) of either sex. All protocols and procedures are approved by the University of California–San Francisco Institutional Animal Care and Use Committee. Animals were maintained on a 12 h light/12 h dark cycle. Recordings were performed during the dark cycle, more active phase of the cycle.

Preparation of mice for extracellular recording on the spherical treadmill. Recordings were done on alert mice free to run on a spherical treadmill modified from the design described by [2]. Briefly, a polystyrene ball (200 mm diameter, Graham Sweet Studios) is placed on a shallow polystyrene bowl (250 mm in diameter, 25 mm thick) with a single air inlet at the bottom. Two optical USB mice, placed 1 mm away from the edge of the ball, are used to sense rotation of the floating ball and transmit signals to the data analysis system using custom driver software. The optical mice acquire locomotion information in an event-driven mode at up to 300 Hz. The data is then translated to the net physical displacement of the top surface of the ball.

During recordings, the animal’s head is fixed to a rigid crossbar above the floating ball by screwing a titanium headplate that is attached to animal’s skull. The headplate—consisting of two side bars and a circular center with a 5 mm central opening—is cemented to the skull one week before recording using surgical procedures as described by [2]. Briefly, animals are anesthetized with isofluorane in oxygen (3% induction, 1.5% maintenance), given subcutaneous Meloxicam (10 mg/kg) as a postoperative analgesic and a subcutaneous injection of 0.2 mL of saline to prevent postoperative dehydration. After a scalp incision, the fascia is cleared from the surface of the skull and the metal headplate is then attached with Metabond (Parkell Co.), covering the entire skull, except for the region in the center of the headplate, which is covered with a 0.2% benzethonium chloride solution (New-Skin Liquid Bandage) to protect the skull. The animal is then allowed to recover on a heating pad. Several days following headplate implant, the animal is allowed to habituate to the recording setup and learn to control the ball by spending time on the floating ball over the course of 2–3 days (15 min to 1 h). The average amount of time the animal spent running (threshold used 0.5 cm/s) was 23% ± 3% (s.e.m.) of the total experiment. Excluding the running trials did not result in any statistically significant change in the results.

Visual stimuli. Visual stimuli were presented with gamma-correction correction on a monitor (Nanao Flexscan, 30 × 40 cm, 60 Hz refresh rate, 32 cd/m² mean luminance) placed 25 cm from the mouse, subtending 60°–75° of visual space. For current source density (CSD) analysis, we present a contrast-reversing square checkerboard (0.04 cpd, square-wave reversing at 1 Hz). For localization of receptive fields by spike-triggered averaging we presented spatiotemporal band-limited noise patterns, as in [1].

To characterize neural responses with single-unit recordings, we presented interleaved drifting square-wave grating stimuli and flow stimuli moving in 8 directions at a temporal frequency of 4 cycle/s over two sets of spatial frequencies: the first included 0.04, 0.15, and 0.24 cpd (100% contrast, trial duration 1.5 s); the second included 0.04, 0.7, 1.0, 1.25, and 1.6 cpd (50% contrast, trial duration 1.0 s). We used flow stimuli with two different geometries. The first are non-oriented single-dot flows, and the other are oriented flow elements with 3 or 4 dots. Both oriented and non-oriented variations had one version with positive contrast (white dots against a black or gray background), and another with negative contrast (black dots against a white or gray background). Dominant spatial frequency contents of 0.15 cpd, 0.24 cpd, 0.7 cpd, 1.0 cpd, 1.25 cpd, and 1.6 cpd were used, corresponding to the following dot diameters, in degrees of visual angle (dot spacings, in multiples of diameter): 2.1 (2), 1.5 (2), 1.4 (1), 1.0 (1), 0.75 (1), 0.5 (1) for single dots; for n dots, diameter is divided by √n so as to preserve total area. For all flow stimuli, both parallel and jittered versions (0 and 0.1 rad std. dev. of flow field direction distribution, respectively) were used, with no detectable difference in the results; flow field tile side: 5 times dot diameter; initial positions on the lattice had std. dev. equal to 10% of
dot spacing. All stimuli variations were repeated 20–25 times according to a randomized sequence. Contrast and trial duration were the same for all stimuli used in the same experiment.

Extracellular recording in awake mice. Extracellular microelectrode recording procedure was slightly modified from [2]. On the day of recording, the animal is again anesthetized as described above. The liquid bandage is removed, and the skull is thinned and removed to produce a craniotomy 1–2 mm in diameter centered above the monocular zone of V1 (2.5–3 mm lateral to midline, 1–2 mm anterior to lambda). This small opening is enough to allow insertion of a 1.1-mm-long double-shank 128-channel probe [3], fabricated by the Masmanidis laboratory (University of California–Los Angeles) and assembled by the Litke laboratory (University of California–Santa Cruz). The electrode is placed at an angle of 30°–45° to the cortical surface and inserted to a depth of 500–1000 µm below the cortical surface. A period of 30 min to 1 h is allowed to pass before recording begins. For each animal, the electrode is inserted no more than twice. Microelectrode and stimulus synchronization data are acquired using an Intan Technologies RHD2000Series Amplifier Evaluation System, sampled at 25 kHz.

Single-neuron analysis. Single units are identified using MountainSort [4], which runs in approximately 2× real time for fully automated spike sorting of data from our 128-site electrodes. Manual curation after a run on one hour of data takes an additional half hour, typically yielding 150 isolated single units.

Cortical layer. The cortical layer containing each isolated unit is determined using current source-density (CSD) analysis on data collected during presentations of contrast-reversing square checkerboard. Briefly, extracellular voltages sampled at 20 kHz are bandpass filtered between 1 and 300 Hz to obtain local field potentials (LFPs) and then averaged across all 1 s positive-phase presentations of the checkerboard. Second spatial derivative of the average LFP traces along the length of the silicon probe provides us with the profile of CSD. The borders between layers 2/3–4, 4–5, and 5–6 are identified by spatiotemporal patterns of sinks and sources in the CSD plot ([5]; for example see Fig. 1C of [6]).

Data analysis. Isolated single units that stopped firing altogether after a certain time of the recording or that only started firing after some time were assumed to have moved away or toward the multielectrode array, respectively; therefore the trials with zero spikes at the beginning and end of recordings were discarded.

An orientation selectivity index (OSI) was defined as: $\frac{(R_{\text{pref}} - R_{\text{ortho}})}{(R_{\text{pref}} + R_{\text{ortho}})}$, where $R_{\text{pref}} = (R_{\text{peak,dir}} + R_{\text{peak,dir+π}})$ is the response (average firing rate) for the preferred orientation and $R_{\text{ortho}} = (R_{\text{ortho,dir}} + R_{\text{ortho,dir+π}})$ is the response for the orientation orthogonal to the preferred one. A direction selectivity index (DSI) was defined as: $\frac{(R_{\text{pref}} - R_{\text{null}})}{(R_{\text{pref}} + R_{\text{null}})}$, where R_{pref} is the response (average firing rate) for the preferred orientation and R_{null} is the response for the null orientation ($π$ rad apart from the preferred one). A stimulus selectivity index (SSI) was defined for a pair of stimuli as $\frac{(R_{\text{max}} - R_{\text{min}})}{(R_{\text{max}})}$, where R_{max} (R_{min}) is the average peak firing rate of the stimulus with higher (lower) firing rate in the pair.

PSTHs were plotted using a Gaussian interpolation kernel. Bin sizes were chosen following [7].

Power spectra of the stimuli were computed with a fast Fourier transform algorithm. Due to the stochasticity of the flow stimuli, the spectra are averages over 40 instances. Data were not treated with any window.
Figure 1: Full response profile for cell in Fig. 2A in the main text. Bin size 34 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average (STA) latency 99 ms.

Figure 2: Full response profile for cell in Fig. 2B in the main text. Bin size 83 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average (STA) latency 99 ms.
Figure 3: Full response profile for cell in Fig. 2C in the main text. Bin size 46 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average (STA) latency 66 ms.

Figure 4: Cell responding to all stimuli, despite its linear-like response to low-frequency gratings. Bin size 39 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average (STA) latency 99 ms.
Figure 5: Cell responding to high frequency gratings and positive flows. Bin size 42 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average (STA) latency 99 ms.

Figure 6: Cell responding to gratings at multiple spatial frequencies. Bin size 31 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average (STA) latency 66 ms.
Figure 7: Cell responding to all stimuli, some with directional tuning, others with orientational tuning; the preferred direction of motion also varies depending on the stimulus. Response to low frequency gratings is linear-like, as suggested by its STA. Bin size 58 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average (STA) latency 165 ms.

Figure 8: Cell tuned to direction, consistent across stimuli. Negative and positive flows have distinct spatial frequency tuning. Bin size 86 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average (STA) latency 66 ms.
Figure 9: Full response profile for cell in Fig. 3A in the main text. Bin size 51 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average (STA) latency 99 ms.
Figure 10: Cell with peak response to positive 1-dot flows at 1.6 cpd. Interestingly, despite its linear-like response to gratings at 0.04 cpd and clear STA, its response to both gratings and flows at higher frequencies is not well-tuned. Bin size 51 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average (STA) latency 66 ms.
Luciano Dyballa, Mahmood S. Hoseini, Maria C. Dadarlat, Steven W. Zucker, Michael P. Stryker

<table>
<thead>
<tr>
<th>Spatial Frequency</th>
<th>Flows</th>
<th>1 dot</th>
<th>3 dots</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04 cpd</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.7 cpd</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1.0 cpd</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1.25 cpd</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1.6 cpd</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 11: Cell tuned to multiple directions at various spatial frequencies. Bin size 59 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average (STA) latency 132 ms.
Figure 12: Cell preserves the same orientation tuning at 0.04-0.7 cpd (gratings) and 0.7-1.0 cpd (positive flows). The oriented flows (3 dots) are more well-tuned than the single-dot flows. Bin size 74 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average (STA) latency 132 ms.
Figure 13: Cell responding almost exclusively to high frequency flows. Interestingly, direction preferences seem to change between positive 1- and 3-dot flows (especially at 1.0 cpd), as well as between different spatial frequencies (e.g., the two-peaked tuning curve seen for positive 1-dot flows at 1.0 cpd becomes four-peaked at 1.6 cpd). Bin size 70 ms; vertical dashed lines indicate stimulus onset and offset. Spike-triggered average (STA) latency 99 ms.
References

